
WHERE topic = ‘ Physical Design ’;

INSERT INTO lecture10 VALUES (‘Constraints, Triggers, Views’);

Mihaela Elena Breabăn

© FII 2021-2022

Databases

CREATE MATERIALIZED VIEW lecture10 AS
SELECT lecture
FROM

Relational Database Design

Methodology

2

1. Requirements analysis

Requirements specs

2. Conceptual Modeling

4. Physical modeling

Tuning

E/R diagrams (UML)

3. Logical modeling

Normalisation

Relational schema

independent of

physical

considerations

tailored to a specific

DBMS

Outline

 Declaring integrity constraints

 Triggers

 Views

3

Static integrity constraints

(1)

 Restrict the possible states of the database

 Describe conditions that every instance of a database must satisfy

 Avoid erroneous insertions, updates, deletions

 Enforce data consistency

 Tell the DBMS information that is useful for data storing and retrieval (query optimization)

 Types

 Domain constraints

 Non-null constraints

 Keys – unique constraints

 Referential integrity

 General constraints at tuple level

 Assertions

4

Static integrity constraints

(2)

 Declaration

 At (table) creation(CREATE TABLE)

 After (table) creation (ALTER TABLE)

 Validation

 At every DML statement

 At the end of the transaction

5

Integrity constraints over 1 attribute

Inline declaration

CREATE TABLE table_name (

a1 type not null, -- does not allow null entries

a2 type unique, --candidate key consisting of one attribute

a3 type primary key, -- primary key consisting of one attribute, implies {not null, unique}

a4 type references table_name2 (b1), --foreign key consisting of one attribute

a5 type check (condition) – the condition is a Boolean expression built with attribute a5: (a5<11 and

a5>4), (a5 between 5 and 10), (a5 in (5,6,7,8,9,10))…

)

6

Integrity constraints over several attributes

Out-of-line declaration

CREATE TABLE table_name (

a1 type,

a2 type,

a3 type,

a4 type,

primary key (a1,a2), -- primary key consisting of two (or more)attributes

unique(a2,a3), -- candidate key consisting of two (or more)attributes

check (condiţie), -- a Boolean expression built over several attributes: ((a1+a3)/2>=5)

foreign key (a3,a4) references table_name2(b1,b2) – multi-valued foreign key

)

7

Referential integrity

Definitions

8

uName city enrolmentsID gName gradScore hsName ID uName faculty decision

UniversityHSGraduate Candidate

 Referential integrity from R.A to S.B:

 Every value in column A of table R must appear in column B of table S

 A is called a foreign key

 B must be declared as primary key or unique for table S

 There may exist multi-valued foreign keys

Referential integrity

Validation

9

 Statements that may generate violations:

 Insertions in R

 Deletions in S

 Updates of R.A or S.B

 Special actions that can be enforced:

 At deletions in S:

ON DELETE RESTRICT (by default) | SET NULL | CASCADE

 At updates on S.B:

ON UPDATE RESTRICT (by default) | SET NULL | CASCADE

Referential integrity
egg or chicken?

10

CREATE TABLE chicken (cID INT PRIMARY KEY,

eID INT REFERENCES egg(eID));

CREATE TABLE egg(eID INT PRIMARY KEY,

cID INT REFERENCES chicken(cID));

CREATE TABLE chicken (cID INT PRIMARY KEY,

eID INT REFERENCES egg(eID));

CREATE TABLE egg(eID INT PRIMARY KEY,

cID INT REFERENCES chicken(cID));

CREATE TABLE chicken(cID INT PRIMARY KEY, eID INT);

CREATE TABLE egg(eID INT PRIMARY KEY, cID INT);

ALTER TABLE chicken ADD CONSTRAINT chickenREFegg

FOREIGN KEY (eID) REFERENCES egg(eID)

DEFERRABLE INITIALLY DEFERRED; -- Oracle

ALTER TABLE egg ADD CONSTRAINT eggREFchicken

FOREIGN KEY (cID) REFERENCES chicken(cID)

DEFERRABLE INITIALLY DEFERRED; -- Oracle

INSERT INTO chicken VALUES(1, 2);

INSERT INTO egg VALUES(2, 1);

COMMIT;

Referential integrity
egg or chicken?

11

How do you solve insertions if the constraints are

validated at each statement?

What about table drops?

Asertions

-defined in the SQL standard -

create assertion Key

check ((select count(distinct A) from T) =

(select count(*) from T)));

create assertion ReferentialIntegrity

check (not exists (select * from Candidate

where ID not in (select ID from HSGraduate)));

12

Integrity constraints

DBMS implementations

 Postgres, SQLite, Oracle, MySQL(innodb) implement and validate all constraints above

 No DBMS allows queries in the check constraint (deviation from the SQL standard)

 No DBMS implements assertions – their functionality can be provided by triggers

13

14

…DEMO…

(file constraints.sql)

Triggers

Dynamic constraints

 Monitor all the changes in a database, check conditions and initiate actions

 Event-condition-action rules

 Bring within the DBMS elements from the application logic

 Enforce constraints that cannot be expressed otherwise

 Are expressive

 May implement repairing actions

 The implementation may differ among DBMSs, the examples in the presentation are in accordance with the

SQL standard

15

Triggers

Implementation

16

Create Trigger name
Before|After|Instead Of event
[Referenced-variables]
[For Each Row] -- the action is executed for each row altered by the event (row vs. statement types)
[When (condition)] – a boolean expression – exactly as within the WHERE clause in SQL queries

action -- în standardul SQL e o comandă SQL, în SGBD-uri poate fi bloc procedural

 event:
 INSERT ON table

 DELETE ON table

 UPDATE [OF a1,a2,…] ON table

 Referenced-variabiles (they are declared and then used in condition and action):

 OLD TABLE AS var

 NEW TABLE AS var

 OLD ROW AS var – only for DELETE, UPDATE

 NEW ROW AS var –only for INSERT, UPDATE
Only for ROW triggers

Triggers

Example

17

 Referential integrity from R.A to S.B implementing cascade deletes

Create Trigger Cascade_Deletes

After Delete On S

Referencing Old Table As OT

[For Each Row]

[no condition]

Delete From R Where

A in (select B from OT)

Create Trigger Cascade_Deletes

After Delete On S

Referencing Old Row As O

For Each Row

[no conditions]

Delete From R Where A = O.B

Triggers

Problems to consider

18

 Several triggers are activated simultaneously: which one is the first to be executed?

 The trigger action activates other triggers: chaining that can create cycles

Triggers

Implementation

19

 Postgres

 The closest to the standard

 implements row+statement -> {old,new}x{row,table} variables

 The syntax suffers some changes

 SQLite

 Only row (no old/new table)

 Are executed after each row modification

 MySQL

 Only row (no old/new table)

 Are executed after each row modification

 Allows only one trigger per event per table

 Oracle

 Implements the standard: row+statement, some syntax changes

 Instead-of triggers are allowed only for views

 Allows the use of procedural blocks

 Introduced the “FOLLOWS” clause in 11g

 Introduced restrictions to avoid cycling

 Studied at the lab in the second semester

20

…DEMO…

(file triggers.sql)

Views

21

physical storage

Internal level

Conceptual level

View_1 View_2 View_3 View_n

Codd’s 12 rules

External level/conceptual level

mapping

 Id Fname Sname DOB J_title Empl_date Scale Tel_no

(Num) (Text) (Text) (Date) (Text) (Date) (Num) (Text)

Finance Department

 ID Name Age Salary

 ID = Id

 Name : Fname X Sname → String

 Age : DoB → Int

 Salary : Empl_date X Scale → Int

 FirstName = FName
 LastName = SName
 Job_title = J_Title
 Number = Tel_no

Switchboard

 FirstName LastName Job_title Number

22 Example from Thomas Connolly, Caroline Begg: “Database Systems. A practical approach to design,

implementation and management”. Ed. Addison Wesley

Conceptual level/internal level

mapping

 Id Fname Sname DOB J_title Empl_date Scale Tel_no

(Num) (Text) (Text) (Date) (Text) (Date) (Num) (Text)

Table_Employees <implemented as>
 ARRAY[n] OF struct STAFF

struct STAFF Table_Employees [5000];

struct STAFF {
int ID;
char Fname[20];
// …
char Tel_no[15];

};

struct INDEXS {
int ID;
int Index ;

} Index_Employees [n];

the information about staff
is physically implemented
by means of an array

other structures, not derived
from the logical level, might
be used at the physical level
(e.g. indexes)

23 Example from Thomas Connolly, Caroline Begg: “Database Systems. A practical approach to design,

implementation and management”. Ed. Addison Wesley

Motivation

24

 Controlled access to the data:

 hide data from specific users

 restrict DML statements

 Reduce the complexity of queries

 Real applications tend to use many views

Definition and use

25

 A view is actually a stored query formulated over tables or other views

 Its schema is generated based on the schema of the query result

 Conceptually, a view is queried just like a table

 In reality, a query over a view is rewritten by replacing the name of the view with the query defining

the view; query optimization takes place, as implemented by the DBMS

 Syntax

Create View view_name [(a1,a2,…)] As <select_statement>

Modifying views

26

 Although the main operation/statement executed on a view is querying it, they may allow DML

operations

 Modification commands on views must be rewritten as modification commands over base tables

 Usually is simple

 Sometimes several ways exist

 Example 1

 R(A,B), V(A)=R[A];

 INSERT INTO V VALUES(3);

 Example 2

 R(N), V(A)=avg(N),

 UPDATE V SET A=7;

Modifying views

Approaches

27

1. The view owner must rewrite all DML statements launched on the view as DML statements on the

tables using the INSTEAD OF trigger

 Covers all the cases

 Guarantees data consistency

2. The SQL standard defines the existence of (inherently) updatable views:

 The view must be created based on a single table T

 The attributes in T that are not used in the view may have NULL entries or DEFAULT values

 There is no aggregation used: no GROUP BY, no DISTINCT keyword

Materialized views

28

Create Materialized View V [a1,a2,…] As <select_statement>

 A new table V is created with schema defined by the select statement

 The tuples result of the query are inserted intoV

 Any query on V is executed directly on table V

 Advantages:

 Specific to regular views + increased query execution speed

 Ddisadvantages:

 V may increase in size

 Any DMLs on the base tables require modifications on V

 Any DMLs on V still must be translated into DMLs on base tables

How decide if materialize?

29

 Data size

 Query complexity

 The number of queries on the view

 The number of modifications on the base tables and the possibility of incrementally updating the view

 Trade-off the time for query processing over the time for propagating updates on the view when DML

commands occur on the base tables

30

…DEMO…

(file views.sql)

Bibliografie

31

 Hector Garcia-Molina, Jeff Ullman, Jennifer Widom: Database Systems: The Complete Book (2nd edition),

Prentice Hall; (June 15, 2008)

 Codd’s 12 Rules for Relational DBMSs (important to understand the architecture of RDBMSs):

https://computing.derby.ac.uk/c/codds-twelve-rules/

 Oracle:

 http://docs.oracle.com/cd/B28359_01/server.111/b28310/general005.htm

 http://www.oracle-base.com/articles/9i/MutatingTableExceptions.php

 http://www.dba-oracle.com/t_avoiding_mutating_table_error.htm

https://computing.derby.ac.uk/c/codds-twelve-rules/
http://docs.oracle.com/cd/B28359_01/server.111/b28310/general005.htm
http://www.oracle-base.com/articles/9i/MutatingTableExceptions.php
http://www.oracle-base.com/articles/9i/MutatingTableExceptions.php

