
WHERE topic = ‘ Physical Design ’;

INSERT INTO lecture10 VALUES (‘Constraints, Triggers, Views’);

Mihaela Elena Breabăn

© FII 2021-2022

Databases

CREATE MATERIALIZED VIEW lecture10 AS
SELECT lecture
FROM

Relational Database Design

Methodology

2

1. Requirements analysis

Requirements specs

2. Conceptual Modeling

4. Physical modeling

Tuning

E/R diagrams (UML)

3. Logical modeling

Normalisation

Relational schema

independent of

physical

considerations

tailored to a specific

DBMS

Outline

 Declaring integrity constraints

 Triggers

 Views

3

Static integrity constraints

(1)

 Restrict the possible states of the database

 Describe conditions that every instance of a database must satisfy

 Avoid erroneous insertions, updates, deletions

 Enforce data consistency

 Tell the DBMS information that is useful for data storing and retrieval (query optimization)

 Types

 Domain constraints

 Non-null constraints

 Keys – unique constraints

 Referential integrity

 General constraints at tuple level

 Assertions

4

Static integrity constraints

(2)

 Declaration

 At (table) creation(CREATE TABLE)

 After (table) creation (ALTER TABLE)

 Validation

 At every DML statement

 At the end of the transaction

5

Integrity constraints over 1 attribute

Inline declaration

CREATE TABLE table_name (

a1 type not null, -- does not allow null entries

a2 type unique, --candidate key consisting of one attribute

a3 type primary key, -- primary key consisting of one attribute, implies {not null, unique}

a4 type references table_name2 (b1), --foreign key consisting of one attribute

a5 type check (condition) – the condition is a Boolean expression built with attribute a5: (a5<11 and

a5>4), (a5 between 5 and 10), (a5 in (5,6,7,8,9,10))…

)

6

Integrity constraints over several attributes

Out-of-line declaration

CREATE TABLE table_name (

a1 type,

a2 type,

a3 type,

a4 type,

primary key (a1,a2), -- primary key consisting of two (or more)attributes

unique(a2,a3), -- candidate key consisting of two (or more)attributes

check (condiţie), -- a Boolean expression built over several attributes: ((a1+a3)/2>=5)

foreign key (a3,a4) references table_name2(b1,b2) – multi-valued foreign key

)

7

Referential integrity

Definitions

8

uName city enrolmentsID gName gradScore hsName ID uName faculty decision

UniversityHSGraduate Candidate

 Referential integrity from R.A to S.B:

 Every value in column A of table R must appear in column B of table S

 A is called a foreign key

 B must be declared as primary key or unique for table S

 There may exist multi-valued foreign keys

Referential integrity

Validation

9

 Statements that may generate violations:

 Insertions in R

 Deletions in S

 Updates of R.A or S.B

 Special actions that can be enforced:

 At deletions in S:

ON DELETE RESTRICT (by default) | SET NULL | CASCADE

 At updates on S.B:

ON UPDATE RESTRICT (by default) | SET NULL | CASCADE

Referential integrity
egg or chicken?

10

CREATE TABLE chicken (cID INT PRIMARY KEY,

eID INT REFERENCES egg(eID));

CREATE TABLE egg(eID INT PRIMARY KEY,

cID INT REFERENCES chicken(cID));

CREATE TABLE chicken (cID INT PRIMARY KEY,

eID INT REFERENCES egg(eID));

CREATE TABLE egg(eID INT PRIMARY KEY,

cID INT REFERENCES chicken(cID));

CREATE TABLE chicken(cID INT PRIMARY KEY, eID INT);

CREATE TABLE egg(eID INT PRIMARY KEY, cID INT);

ALTER TABLE chicken ADD CONSTRAINT chickenREFegg

FOREIGN KEY (eID) REFERENCES egg(eID)

DEFERRABLE INITIALLY DEFERRED; -- Oracle

ALTER TABLE egg ADD CONSTRAINT eggREFchicken

FOREIGN KEY (cID) REFERENCES chicken(cID)

DEFERRABLE INITIALLY DEFERRED; -- Oracle

INSERT INTO chicken VALUES(1, 2);

INSERT INTO egg VALUES(2, 1);

COMMIT;

Referential integrity
egg or chicken?

11

How do you solve insertions if the constraints are

validated at each statement?

What about table drops?

Asertions

-defined in the SQL standard -

create assertion Key

check ((select count(distinct A) from T) =

(select count(*) from T)));

create assertion ReferentialIntegrity

check (not exists (select * from Candidate

where ID not in (select ID from HSGraduate)));

12

Integrity constraints

DBMS implementations

 Postgres, SQLite, Oracle, MySQL(innodb) implement and validate all constraints above

 No DBMS allows queries in the check constraint (deviation from the SQL standard)

 No DBMS implements assertions – their functionality can be provided by triggers

13

14

…DEMO…

(file constraints.sql)

Triggers

Dynamic constraints

 Monitor all the changes in a database, check conditions and initiate actions

 Event-condition-action rules

 Bring within the DBMS elements from the application logic

 Enforce constraints that cannot be expressed otherwise

 Are expressive

 May implement repairing actions

 The implementation may differ among DBMSs, the examples in the presentation are in accordance with the

SQL standard

15

Triggers

Implementation

16

Create Trigger name
Before|After|Instead Of event
[Referenced-variables]
[For Each Row] -- the action is executed for each row altered by the event (row vs. statement types)
[When (condition)] – a boolean expression – exactly as within the WHERE clause in SQL queries

action -- în standardul SQL e o comandă SQL, în SGBD-uri poate fi bloc procedural

 event:
 INSERT ON table

 DELETE ON table

 UPDATE [OF a1,a2,…] ON table

 Referenced-variabiles (they are declared and then used in condition and action):

 OLD TABLE AS var

 NEW TABLE AS var

 OLD ROW AS var – only for DELETE, UPDATE

 NEW ROW AS var –only for INSERT, UPDATE
Only for ROW triggers

Triggers

Example

17

 Referential integrity from R.A to S.B implementing cascade deletes

Create Trigger Cascade_Deletes

After Delete On S

Referencing Old Table As OT

[For Each Row]

[no condition]

Delete From R Where

A in (select B from OT)

Create Trigger Cascade_Deletes

After Delete On S

Referencing Old Row As O

For Each Row

[no conditions]

Delete From R Where A = O.B

Triggers

Problems to consider

18

 Several triggers are activated simultaneously: which one is the first to be executed?

 The trigger action activates other triggers: chaining that can create cycles

Triggers

Implementation

19

 Postgres

 The closest to the standard

 implements row+statement -> {old,new}x{row,table} variables

 The syntax suffers some changes

 SQLite

 Only row (no old/new table)

 Are executed after each row modification

 MySQL

 Only row (no old/new table)

 Are executed after each row modification

 Allows only one trigger per event per table

 Oracle

 Implements the standard: row+statement, some syntax changes

 Instead-of triggers are allowed only for views

 Allows the use of procedural blocks

 Introduced the “FOLLOWS” clause in 11g

 Introduced restrictions to avoid cycling

 Studied at the lab in the second semester

20

…DEMO…

(file triggers.sql)

Views

21

physical storage

Internal level

Conceptual level

View_1 View_2 View_3 View_n

Codd’s 12 rules

External level/conceptual level

mapping

 Id Fname Sname DOB J_title Empl_date Scale Tel_no

(Num) (Text) (Text) (Date) (Text) (Date) (Num) (Text)

Finance Department

 ID Name Age Salary

 ID = Id

 Name : Fname X Sname → String

 Age : DoB → Int

 Salary : Empl_date X Scale → Int

 FirstName = FName
 LastName = SName
 Job_title = J_Title
 Number = Tel_no

Switchboard

 FirstName LastName Job_title Number

22 Example from Thomas Connolly, Caroline Begg: “Database Systems. A practical approach to design,

implementation and management”. Ed. Addison Wesley

Conceptual level/internal level

mapping

 Id Fname Sname DOB J_title Empl_date Scale Tel_no

(Num) (Text) (Text) (Date) (Text) (Date) (Num) (Text)

Table_Employees <implemented as>
 ARRAY[n] OF struct STAFF

struct STAFF Table_Employees [5000];

struct STAFF {
int ID;
char Fname[20];
// …
char Tel_no[15];

};

struct INDEXS {
int ID;
int Index ;

} Index_Employees [n];

the information about staff
is physically implemented
by means of an array

other structures, not derived
from the logical level, might
be used at the physical level
(e.g. indexes)

23 Example from Thomas Connolly, Caroline Begg: “Database Systems. A practical approach to design,

implementation and management”. Ed. Addison Wesley

Motivation

24

 Controlled access to the data:

 hide data from specific users

 restrict DML statements

 Reduce the complexity of queries

 Real applications tend to use many views

Definition and use

25

 A view is actually a stored query formulated over tables or other views

 Its schema is generated based on the schema of the query result

 Conceptually, a view is queried just like a table

 In reality, a query over a view is rewritten by replacing the name of the view with the query defining

the view; query optimization takes place, as implemented by the DBMS

 Syntax

Create View view_name [(a1,a2,…)] As <select_statement>

Modifying views

26

 Although the main operation/statement executed on a view is querying it, they may allow DML

operations

 Modification commands on views must be rewritten as modification commands over base tables

 Usually is simple

 Sometimes several ways exist

 Example 1

 R(A,B), V(A)=R[A];

 INSERT INTO V VALUES(3);

 Example 2

 R(N), V(A)=avg(N),

 UPDATE V SET A=7;

Modifying views

Approaches

27

1. The view owner must rewrite all DML statements launched on the view as DML statements on the

tables using the INSTEAD OF trigger

 Covers all the cases

 Guarantees data consistency

2. The SQL standard defines the existence of (inherently) updatable views:

 The view must be created based on a single table T

 The attributes in T that are not used in the view may have NULL entries or DEFAULT values

 There is no aggregation used: no GROUP BY, no DISTINCT keyword

Materialized views

28

Create Materialized View V [a1,a2,…] As <select_statement>

 A new table V is created with schema defined by the select statement

 The tuples result of the query are inserted intoV

 Any query on V is executed directly on table V

 Advantages:

 Specific to regular views + increased query execution speed

 Ddisadvantages:

 V may increase in size

 Any DMLs on the base tables require modifications on V

 Any DMLs on V still must be translated into DMLs on base tables

How decide if materialize?

29

 Data size

 Query complexity

 The number of queries on the view

 The number of modifications on the base tables and the possibility of incrementally updating the view

 Trade-off the time for query processing over the time for propagating updates on the view when DML

commands occur on the base tables

30

…DEMO…

(file views.sql)

Bibliografie

31

 Hector Garcia-Molina, Jeff Ullman, Jennifer Widom: Database Systems: The Complete Book (2nd edition),

Prentice Hall; (June 15, 2008)

 Codd’s 12 Rules for Relational DBMSs (important to understand the architecture of RDBMSs):

https://computing.derby.ac.uk/c/codds-twelve-rules/

 Oracle:

 http://docs.oracle.com/cd/B28359_01/server.111/b28310/general005.htm

 http://www.oracle-base.com/articles/9i/MutatingTableExceptions.php

 http://www.dba-oracle.com/t_avoiding_mutating_table_error.htm

https://computing.derby.ac.uk/c/codds-twelve-rules/
http://docs.oracle.com/cd/B28359_01/server.111/b28310/general005.htm
http://www.oracle-base.com/articles/9i/MutatingTableExceptions.php
http://www.oracle-base.com/articles/9i/MutatingTableExceptions.php

